329 research outputs found

    Multiple impact therapy : evaluation and design for future study

    Get PDF
    The theoretical underpinnings of Washington County Children\u27s Services Division (CSD) Immediate Conflict-Resolution Family Treatment Program include the systems theory of family therapy with a focus on communication and roles. One of the many approaches to helping families in crisis, it incorporates theories regarding assessment of and intervention in families in crisis. Finally, while it draws upon several different approaches to family therapy, the Washington County program is most closely related to Multiple Impact Therapy (MIT). Thus, a review of relevant literature must address portions of the above enumerated theories that illuminate the thinking behind the Immediate Conflict- Resolution Family Treatment Program. While each of the four components of the literature review (systems theory, family crisis theory, assessment of families in crisis, and Multiple Impact Therapy) represents a topic area of breadth and complexity, the aspects of each topic area which seem most relevant to Washington County\u27s MIT project have been reviewed

    Spin Flipping and Polarization Lifetimes of a 270 MeV Deuteron Beam

    Full text link
    We recently studied the spin flipping of a 270 MeV vertically polarized deuteron beam stored in the IUCF Cooler Ring. We swept an rf solenoid’s frequency through an rf‐induced spin resonance and observed the effect on the beam’s vector and tensor polarizations. After optimizing the resonance crossing rate and setting the solenoid’s voltage to its maximum value, we obtained a spin‐flip efficiency of about 94 ± 1% for the vector polarization; we also observed a partial spin‐flip of the tensor polarization. We then used the rf‐induced resonance to measure the vector and tensor polarizations’ lifetimes at different distances from the resonance; the polarization lifetime ratio τvector/τtensor was about 1.9 ± 0.4. © 2003 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87679/2/766_1.pd

    Mass transport by buoyant bubbles in galaxy clusters

    Full text link
    We investigate the effect of three important processes by which AGN-blown bubbles transport material: drift, wake transport and entrainment. The first of these, drift, occurs because a buoyant bubble pushes aside the adjacent material, giving rise to a net upward displacement of the fluid behind the bubble. For a spherical bubble, the mass of upwardly displaced material is roughly equal to half the mass displaced by the bubble, and should be ~ 10^{7-9} solar masses depending on the local ICM and bubble parameters. We show that in classical cool core clusters, the upward displacement by drift may be a key process in explaining the presence of filaments behind bubbles. A bubble also carries a parcel of material in a region at its rear, known as the wake. The mass of the wake is comparable to the drift mass and increases the average density of the bubble, trapping it closer to the cluster centre and reducing the amount of heating it can do during its ascent. Moreover, material dropping out of the wake will also contribute to the trailing filaments. Mass transport by the bubble wake can effectively prevent the build-up of cool material in the central galaxy, even if AGN heating does not balance ICM cooling. Finally, we consider entrainment, the process by which ambient material is incorporated into the bubble. AbridgedComment: Accepted for publication in MNRAS. 17 pages, 4 figures, 2 tables. Formatted for letter paper and adjusted author affiliations

    Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    Full text link
    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with nn current particles, a new particle is born with instantaneous rate λn\lambda_n and a particle dies with instantaneous rate Όn\mu_n. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics

    What is a Cool-Core Cluster? A Detailed Analysis of the Cores of the X-ray Flux-Limited HIFLUGCS Cluster Sample

    Full text link
    We use the largest complete sample of 64 galaxy clusters (HIghest X-ray FLUx Galaxy Cluster Sample) with available high-quality X-ray data from Chandra, and apply 16 cool-core diagnostics to them, some of them new. We also correlate optical properties of brightest cluster galaxies (BCGs) with X-ray properties. To segregate cool core and non-cool-core clusters, we find that central cooling time, t_cool, is the best parameter for low redshift clusters with high quality data, and that cuspiness is the best parameter for high redshift clusters. 72% of clusters in our sample have a cool core (t_cool < 7.7 h_{71}^{-1/2} Gyr) and 44% have strong cool cores (t_cool <1.0 h_{71}^{-1/2} Gyr). For the first time we show quantitatively that the discrepancy in classical and spectroscopic mass deposition rates can not be explained with a recent formation of the cool cores, demonstrating the need for a heating mechanism to explain the cooling flow problem. [Abridged]Comment: 45 pages, 19 figures, 7 tables. Accepted for publication in A&A. Contact Person: Rupal Mittal ([email protected]

    A Chandra X-ray Analysis of Abell 1664: Cooling, Feedback and Star Formation in the Central Cluster Galaxy

    Full text link
    The brightest cluster galaxy (BCG) in the Abell 1664 cluster is unusually blue and is forming stars at a rate of ~ 23 M_{\sun} yr^{-1}. The BCG is located within 5 kpc of the X-ray peak, where the cooling time of 3.5x10^8 yr and entropy of 10.4 keV cm^2 are consistent with other star-forming BCGs in cooling flow clusters. The center of A1664 has an elongated, "bar-like" X-ray structure whose mass is comparable to the mass of molecular hydrogen, ~ 10^{10} M_{\sun} in the BCG. We show that this gas is unlikely to have been stripped from interloping galaxies. The cooling rate in this region is roughly consistent with the star formation rate, suggesting that the hot gas is condensing onto the BCG. We use the scaling relations of Birzan et al. 2008 to show that the AGN is underpowered compared to the central X-ray cooling luminosity by roughly a factor of three. We suggest that A1664 is experiencing rapid cooling and star formation during a low-state of an AGN feedback cycle that regulates the rates of cooling and star formation. Modeling the emission as a single temperature plasma, we find that the metallicity peaks 100 kpc from the X-ray center, resulting in a central metallicity dip. However, a multi-temperature cooling flow model improves the fit to the X-ray emission and is able to recover the expected, centrally-peaked metallicity profile.Comment: 15 pages, 13 figure

    Remote Sensing of Environment: Current status of Landsat program, science, and applications

    Get PDF
    Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat

    An Expert Consensus Statement on the Management of Large Chondral and Osteochondral Defects in the Patellofemoral Joint

    Get PDF
    © The Author(s) 2020. Background: Cartilage lesions of the patellofemoral joint constitute a frequent abnormality. Patellofemoral conditions are challenging to treat because of complex biomechanics and morphology. Purpose: To develop a consensus statement on the functional anatomy, indications, donor graft considerations, surgical treatment, and rehabilitation for the management of large chondral and osteochondral defects in the patellofemoral joint using a modified Delphi technique. Study Design: Consensus statement. Methods: A working group of 4 persons generated a list of statements related to the functional anatomy, indications, donor graft considerations, surgical treatment, and rehabilitation for the management of large chondral and osteochondral defects in the patellofemoral joint to form the basis of an initial survey for rating by a group of experts. The Metrics of Osteochondral Allografts (MOCA) expert group (composed of 28 high-volume cartilage experts) was surveyed on 3 occasions to establish a consensus on the statements. In addition to assessing agreement for each included statement, experts were invited to propose additional statements for inclusion or to suggest modifications of existing statements with each round. Predefined criteria were used to refine statement lists after each survey round. Statements reaching a consensus in round 3 were included within the final consensus document. Results: A total of 28 experts (100% response rate) completed 3 rounds of surveys. After 3 rounds, 36 statements achieved a consensus, with over 75% agreement and less than 20% disagreement. A consensus was reached in 100.00% of the statements relating to functional anatomy of the patellofemoral joint, 88.24% relating to surgical indications, 100.00% relating to surgical technical aspects, and 100.00% relating to rehabilitation, with an overall consensus of 95.5%. Conclusion: This study established a strong expert consensus document relating to the functional anatomy, surgical indications, donor graft considerations for osteochondral allografts, surgical technical aspects, and rehabilitation concepts for the management of large chondral and osteochondral defects in the patellofemoral joint. Further research is required to clinically validate the established consensus statements and better understand the precise indications for surgery as well as which techniques and graft processing/preparation methods should be used based on patient- and lesion-specific factors

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Magnetic turbulence in cool cores of galaxy clusters

    Full text link
    We argue that the recently reported Kolmogorov-like magnetic turbulence spectrum in the cool core of the Hydra A galaxy cluster can be understood by kinetic energy injection by active galaxies that drives a turbulent non-helical magnetic dynamo into its saturated state. Although dramatic differences exist between small-scale dynamo scenarios, their saturated state is expected to be similar, as we show for three scenarios: the flux rope dynamo, the fluctuation dynamo, and the explosive dynamo. Based on those scenarios, we develop an analytical model of the hydrodynamic and magnetic turbulence in cool cores. The model implies magnetic field strengths that fit well with Faraday rotation measurements and minimum energy estimates for the sample of cool core clusters having such data available. Predictions for magnetic fields in clusters for which the appropriate observational information is still missing, and for yet unobserved quantities like the hydrodynamical turbulence velocity and characteristic length-scale are provided. The underlying dynamo models suggest magnetic intermittency and possibly a large-scale hydrodynamic viscosity. We conclude that the success of the model to explain the field strength in cool core clusters indicates that in general cluster magnetic fields directly reflect hydrodynamical turbulence, also in clusters without cool cores.Comment: 15 pages, 4 figures, A&A in pres
    • 

    corecore